411 research outputs found

    Adaptive constraints for feature tracking

    Get PDF
    In this paper extensions to an existing tracking algorithm are described. These extensions implement adaptive tracking constraints in the form of regional upper-bound displacements and an adaptive track smoothness constraint. Together, these constraints make the tracking algorithm more flexible than the original algorithm (which used fixed tracking parameters) and provide greater confidence in the tracking results. The result of applying the new algorithm to high-resolution ECMWF reanalysis data is shown as an example of its effectiveness

    Structure of a bacterial type IV secretion core complex at subnanometre resolution

    Get PDF
    Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1-11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane-spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O-layer inserted in the outer membrane and the I-layer inserted in the inner membrane. While the structure of the O-layer has been solved by X-ray crystallography, there is no detailed structural information on the I-layer. Using high-resolution cryo-electron microscopy and molecular modelling combined with biochemical approaches, we determined the I-layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived

    Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11

    No full text
    The ATP-dependent degradation of polyubiquitylated proteins by the 26S proteasome is essential for the maintenance of proteome stability and the regulation of a plethora of cellular processes. Degradation of substrates is preceded by the removal of polyubiquitin moieties through the isopeptidase activity of the subunit Rpn11. Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody. This fusion protein exhibits modest deubiquitylation activity toward a model substrate. Full activation requires incorporation of Rpn11 into the 26S proteasome and is dependent on ATP hydrolysis, suggesting that substrate processing and polyubiquitin removal are coupled. Based on our structures, we propose that premature activation is prevented by the combined effects of low intrinsic ubiquitin affinity, an insertion segment acting as a physical barrier across the substrate access channel, and a conformationally unstable catalytic loop in Rpn11. The docking of the structure into the proteasome EM density revealed contacts of Rpn11 with ATPase subunits, which likely stabilize the active conformation and boost the affinity for the proximal ubiquitin moiety. The narrow space around the Rpn11 active site at the entrance to the ATPase ring pore is likely to prevent erroneous deubiquitylation of folded proteins

    Allosteric modulation of the GTPase activity of a bacterial LRRK2 homolog by conformation-specific Nanobodies

    Get PDF
    Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homolog cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTP turnover rate of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer–monomer cycle through the destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric modulation of the RocCOR dimer–monomer cycle can alter its GTPase activity, which might present a potential novel strategy to overcome the effect of LRRK2 PD mutations

    Structural and functional basis for RNA cleavage by Ire1

    Get PDF
    BACKGROUND: The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. RESULTS: This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing \u3e/=7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL) of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. CONCLUSIONS: Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L

    Liminal entrepreneuring : the creative practices of nascent necessity entrepreneurs

    Get PDF
    This paper contributes to creative entrepreneurship studies through exploring ‘liminal entrepreneuring’, i.e., the organization-creation entrepreneurial practices and narratives of individuals living in precarious conditions. Drawing on a processual approach to entrepreneurship and Turner’s liminality concept, we study the transition from un(der)employment to entrepreneurship of 50 nascent necessity entrepreneurs (NNEs) in Spain, the United Kingdom, and Ireland. The paper asks how these agents develop creative entrepreneuring practices in their efforts to overcome their condition of ‘necessity’. The analysis shows how, in their everyday liminal entrepreneuring, NNEs disassemble their identities and social positions, experiment with new relationships and alternative visions of themselves, and (re)connect with entrepreneuring ideas and practices in a new way, using imagination and organization-creation practices to reconstruct both self and context in the process. The results question and expand the notion of entrepreneuring in times of socioeconomic stress

    Land cover type modulates the distribution of litter in a Nordic cultural landscape

    Get PDF
    Litter pollution is a global environmental problem that occurs in virtually all ecosystems. Scientific research on anthropogenic litter and its environmental impacts focusses predominantly on plastics and the marine environment. Little empirical knowledge exists about the distribution and ecological impacts of litter in terrestrial environments, where most litter is produced. To start closing that knowledge gap, we investigated the distribution of litter in a cultural landscape in central Norway and in relation to land cover types. We registered and collected litter in 110 survey plots that were randomly stratified across various land cover types. Our results show that land cover type modulates the occurrence, abundance, fragments size, and that litter is most present and abundant in or near land cover types associated with high human activities. Plastic was by far the most common litter material type, although the litter community (in terms of materials type) was not independent from land cover type. This knowledge can help to inform and optimize litter management and clean-up activities in terrestrial landscapes. How and to what extent the spatial structure of the litter community mediates ecological effects across various land cover types remains unknown to a large extent and warrants further study.publishedVersio

    Snapshots of actin and tubulin folding inside the TRiC chaperonin

    Get PDF
    The integrity of a cell's proteome depends on correct folding of polypeptides by chaperonins. The chaperonin TCP-1 ring complex (TRiC) acts as obligate folder for >10% of cytosolic proteins, including he cytoskeletal proteins actin and tubulin. Although its architecture and how it recognizes folding substrates are emerging from structural studies, the subsequent fate of substrates inside the TRiC chamber is not defined. We trapped endogenous human TRiC with substrates (actin, tubulin) and cochaperone (PhLP2A) at different folding stages, for structure determination by cryo-EM. The already-folded regions of client proteins are anchored at the chamber wall, positioning unstructured regions toward the central space to achieve their native fold. Substrates engage with different sections of the chamber during the folding cycle, coupled to TRiC open-and-close transitions. Further, the cochaperone PhLP2A modulates folding, acting as a molecular strut between substrate and TRiC chamber. Our structural snapshots piece together an emerging model of client protein folding within TRiC. Tagging of the endogenous type II chaperonin TRiC complex using CRISPR knock-in enables its purification for cryo-EM. A series of structures reveal the fate of substrates and co-chaperones inside the TRiC chamber to uncover its inner workings.Peer reviewe
    corecore